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The structure of this appendix is as follows. In Section S1, we present results on Sharpe
ratios net of 0.5% turnover costs. First, we plot Sharpe ratios net of turnover cost relative
to the naive portfolio across datasets. These plots illustrate the economic significance of
employing econometric models in portfolio construction. Second, we display tables of Sharpe
ratios net of turnover cost. We present pairwise comparisons between portfolio variance
strategies in Section S2. Section S3 provides some implementation details regarding the
econometric models we employ. We detail the portfolio models we compare in Table S4.1 of
Section S4.

S1 Sharpe Ratio Net of Turnover Costs
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Figure S1.1: Sharpe Ratio Net of Turnover Costs Percentage Difference Relative to Naive
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Notes: See Table S3.1 for explanations of econometric model abbreviations; CP denotes combined
parameter model (6) from the main paper. Dataset 1: Fama-French portfolios; Dataset 2: industry
portfolios; Dataset 3: sector portfolios; Dataset 4: international equity indices; Dataset 5: portfolios
sorted by size/book-to-market; Dataset 6: momentum portfolios. Results are for value-weighted data
at weekly frequency.
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Table S1.1: Sharpe Ratio Net of Turnover Cost: Minimum-Variance and Constrained
Minimum-Variance

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

Näıve 0.113 0.101 0.035 0.054 0.100 0.087

Minimum-
Variance
COV 0.095 0.132** 0.056 0.151** 0.182*** 0.110*
EWMA 0.103 0.125 0.045 0.119 0.170*** 0.094
VAR 0.093 0.134** 0.057 0.142** 0.191*** 0.111*
VEC (0.090*) 0.133** 0.056 0.146** 0.185*** 0.113**
BEKK 0.098 0.132** 0.057 0.146** 0.181*** 0.113**
ABEKK 0.098 0.131** 0.056 0.147** 0.181*** 0.113**
CCC 0.100 0.131** 0.057 0.126** 0.176*** 0.108**
DCC 0.100 0.132** 0.055 0.134** 0.172*** 0.111**
ADCC 0.100 0.132** 0.055 0.134** 0.172*** 0.111**
COPULA 0.100 0.129** 0.056 0.107* 0.118*** 0.087
RSVAR (0.087*) 0.101 0.041 0.084** 0.114*** 0.098***
MSV 0.102 0.127 0.071 0.121* 0.158*** 0.113
RCOV 0.108 0.137* 0.074 0.132** 0.198*** 0.106
CP 0.089 0.107* 0.041 0.090** 0.117*** 0.099***

Constrained
Minimum-
Variance
COV 0.101 0.118* 0.044 0.099*** 0.118*** 0.099***
EWMA 0.112 0.121** 0.056 0.074 0.123*** 0.094
VAR 0.099 0.119* 0.046 0.095** 0.120*** 0.098**
VEC 0.099 0.119* 0.048 0.092** 0.117*** 0.099***
BEKK 0.106 0.118* 0.046 0.098** 0.119*** 0.098**
ABEKK 0.106 0.118* 0.046 0.098** 0.119*** 0.098**
CCC 0.102 0.120** 0.047 0.098*** 0.119*** 0.099***
DCC 0.102 0.119* 0.043 0.098*** 0.117*** 0.098**
ADCC 0.102 0.119* 0.043 0.098** 0.117*** 0.098***
COPULA 0.103 0.120** 0.044 0.089** 0.113*** 0.090
RSVAR 0.087 0.102 0.041 0.084** 0.113*** 0.098***
MSV 0.104 0.118* 0.060 0.086** 0.121*** 0.099*
RCOV 0.111 0.123 0.054 0.100** 0.124*** 0.098**
CP 0.090 0.107** 0.041 0.090** 0.115*** 0.098***

Notes: See Table S3.1 for explanations of econometric model abbreviations; CP denotes combined param-
eter model (6) from the main paper. Dataset 1: Fama-French portfolios; Dataset 2: industry portfolios;
Dataset 3: sector portfolios; Dataset 4: international equity indices; Dataset 5: portfolios sorted by
size/book-to-market; Dataset 6: momentum portfolios. Results are for value-weighted data at weekly
frequency. * significant at 10%; ** significant at 5%; *** significant at 1%. Significance corresponds to
the Ledoit and Wolf (2008) robust test for differences between the Sharpe ratio and that of the naive
strategy. Numbers in parentheses are statistically significantly worse than those of the naive strategy.
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Table S1.2: Sharpe Ratio Net of Turnover Cost: Volatility-Timing

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

Näıve 0.113 0.101 0.035 0.054 0.100 0.087

Volatility
Timing
COV (0.088**) 0.109*** 0.040 0.063** 0.105*** 0.094***
EWMA (0.085*) 0.111** 0.042 0.061 0.109*** 0.093**
VAR (0.081**) 0.109*** 0.040 0.063** 0.106*** 0.093***
VEC (0.079**) 0.109*** 0.040 0.062** 0.106*** 0.094***
BEKK (0.089*) 0.109*** 0.040 0.063*** 0.105*** 0.093***
ABEKK (0.089*) 0.109*** 0.040 0.063*** 0.105*** 0.093***
CCC (0.088**) 0.109*** 0.040 0.063** 0.106*** 0.094***
DCC (0.088**) 0.109*** 0.040 0.063*** 0.105*** 0.093***
ADCC (0.088**) 0.109*** 0.040 0.063** 0.105*** 0.093***
COPULA (0.088**) 0.109*** 0.039 0.063*** 0.105*** 0.094***
RSVAR (0.084*) 0.102 0.041 0.085** 0.113*** 0.099***
MSV (0.074**) 0.110** 0.044* 0.061* 0.108*** 0.094**
RCOV 0.092 0.110*** 0.043* 0.065*** 0.105*** 0.091***
CP (0.085*) 0.103 0.040 0.076** 0.113*** 0.098***

Notes: See Table S3.1 for explanations of econometric model abbreviations; CP denotes combined param-
eter model (6) from the main paper. Dataset 1: Fama-French portfolios; Dataset 2: industry portfolios;
Dataset 3: sector portfolios; Dataset 4: international equity indices; Dataset 5: portfolios sorted by
size/book-to-market; Dataset 6: momentum portfolios. Results are for value-weighted data at weekly
frequency. * significant at 10%; ** significant at 5%; *** significant at 1%. Significance corresponds to
the Ledoit and Wolf (2008) robust test for differences between the Sharpe ratio and that of the naive
strategy. Numbers in parentheses are statistically significantly worse than those of the naive strategy.
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S2 Pairwise Comparisons Between Variance Strategies

The minimum-variance strategy weakly dominates the volatility-timing strategy with higher
Sharpe ratios and lower turnover costs for every econometric model and dataset. Other than
dataset 1 (except for MSV), and RSVAR for dataset 2, the minimum-variance strategy weakly
dominates the constrained minimum-variance strategy with higher Sharpe ratios, with and
without controlling for turnover costs. Other than RCOV for dataset 1, and RSVAR and
CP for datasets 1 and 2, the minimum-variance strategy weakly dominates the constrained
minimum-variance strategy with lower portfolio volatility. Other than GARCHCOPULA for
dataset 6, the constrained minimum-variance strategy weakly dominates the volatility-timing
strategy with higher Sharpe ratios and lower turnover costs. Except RSVAR for dataset 2,
both the minimum-variance strategy and the constrained minimum-variance strategy weakly
dominate the volatility-timing strategy with lower portfolio volatility. Taken together, the
minimum-variance strategy performs the best, with constrained minimum-variance in second
place, and the volatility-timing strategy distinctly further down in third spot.
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Table S2.1: Sharpe Ratio: Variance Strategies Pairwise Comparisons

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

MVP vs Con-MVP
Cov × ✓* ✓* ✓
EWMA × ✓
VAR × ✓ ✓* ✓
VEC × ✓
BEKK × ✓* ✓* ✓ ✓*
ABEKK × ✓* ✓* ✓ ✓*
CCC × ✓* ✓
DCC ×* ✓ ✓* ✓ ✓*
ADCC ×* ✓* ✓* ✓ ✓*
GARCHCOPULA × ✓ ✓* ✓
RSVAR × × ✓* ✓ ✓
MSV ✓
RCOV × ✓* ✓* ✓
CP × ✓ ✓* ✓ ✓

MVP vs VT
Cov ✓* ✓ ✓
EWMA ✓* ✓
VAR ✓ ✓* ✓ ✓ ✓*
VEC ✓ ✓* ✓* ✓ ✓*
BEKK ✓* ✓ ✓ ✓*
ABEKK ✓* ✓ ✓ ✓
CCC ✓ ✓* ✓ ✓ ✓*
DCC ✓ ✓* ✓ ✓ ✓*
ADCC ✓ ✓ ✓ ✓ ✓*
GARCHCOPULA ✓ ✓ ✓* ✓
RSVAR ✓
MSV ✓ ✓
RCOV ✓ ✓ ✓
CP ✓ ✓ ✓ ✓

con-MVP vs VT
Cov ✓ ✓ ✓ ✓
EWMA ✓ ✓* ✓
VAR ✓ ✓ ✓ ✓*
VEC ✓ ✓ ✓ ✓
BEKK ✓ ✓ ✓ ✓
ABEKK ✓ ✓ ✓ ✓
CCC ✓ ✓ ✓ ✓
DCC ✓ ✓ ✓ ✓
ADCC ✓ ✓ ✓ ✓
GARCHCOPULA ✓ ✓* ✓ ✓ ×
RSVAR ✓
MSV ✓ ✓ ✓
RCOV ✓ ✓ ✓
CP ✓ ✓ ✓ ✓*

Notes: See Table S3.1 for explanations of econometric model abbreviations; CP denotes combined param-
eter model (6) from the main paper; and MVP, con-MVP, and VT strategies are described in Table S4.1.
See Table S1.1 for explanations of datasets. Results are for value-weighted data at weekly frequency. ✓:
left strategy outperforms right at 5% level or lower; ✓*: left strategy outperforms right at 10% level;
×: left strategy underperforms right at 5% level or lower; ×*: left strategy underperforms right at 10%
level; else, insignificant difference. Significance corresponds to the Ledoit and Wolf (2008) robust test for
differences between the Sharpe ratios.
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Table S2.2: Portfolio Volatility: Variance Strategies Pairwise Comparisons

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

MVP vs con-MVP
Cov ✓ ✓
EWMA ✓* ✓
VAR ✓ ✓
VEC ✓ ✓
BEKK ✓ ✓
ABEKK ✓ ✓
CCC ✓ ✓
DCC ✓ ✓
ADCC ✓ ✓
GARCHCOPULA ✓* ✓* ✓
RSVAR × × ✓ ✓ ✓
MSV ✓* ✓ ✓
RCOV ×* ✓* ✓ ✓
CP × × ✓* ✓ ✓

MVP vs VT
Cov ✓ ✓ ✓ ✓ ✓ ✓
EWMA ✓ ✓ ✓ ✓ ✓
VAR ✓ ✓ ✓ ✓* ✓ ✓
VEC ✓ ✓ ✓* ✓ ✓ ✓
BEKK ✓ ✓* ✓* ✓ ✓
ABEKK ✓ ✓ ✓* ✓ ✓
CCC ✓ ✓ ✓ ✓ ✓
DCC ✓* ✓ ✓ ✓ ✓ ✓
ADCC ✓* ✓ ✓ ✓ ✓ ✓
GARCHCOPULA ✓ ✓ ✓* ✓ ✓
RSVAR ✓ × ×
MSV ✓ ✓ ✓* ✓ ✓
RCOV ✓ ✓ ✓* ✓ ✓ ✓
CP ✓ ✓ ✓ ✓ ✓

con-MVP vs VT
Cov ✓* ✓ ✓ ✓ ✓ ✓
EWMA ✓ ✓ ✓ ✓ ✓ ✓
VAR ✓ ✓ ✓ ✓ ✓ ✓
VEC ✓ ✓ ✓ ✓ ✓ ✓
BEKK ✓ ✓ ✓ ✓ ✓
ABEKK ✓ ✓ ✓ ✓ ✓
CCC ✓ ✓ ✓ ✓ ✓
DCC ✓ ✓ ✓ ✓ ✓
ADCC ✓ ✓ ✓ ✓ ✓
GARCHCOPULA ✓ ✓ ✓ ✓ ✓
RSVAR ✓ ×* ×
MSV ✓ ✓ ✓* ✓ ✓ ✓
RCOV ✓ ✓ ✓ ✓ ✓ ✓
CP ✓ ✓ ✓ ✓

Notes: See Table S3.1 for explanations of econometric model abbreviations; CP denotes combined param-
eter model (6) from the main paper; and MVP, con-MVP, and VT strategies are described in Table S4.1.
See Table S1.1 for explanations of datasets. Results are for value-weighted data at weekly frequency. ✓:
left strategy outperforms right at 5% level or lower; ✓*: left strategy outperforms right at 10% level;
×: left strategy underperforms right at 5% level or lower; ×*: left strategy underperforms right at 10%
level; else, insignificant difference. Significance corresponds to the Ledoit and Wolf (2011) robust test for
unequal group variances.
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Table S2.3: Sharpe Ratio Net of Turnover Cost: Variance Strategies Pairwise Comparisons

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

MVP vs con-MVP
Cov × ✓* ✓* ✓
EWMA × ✓
VAR × ✓ ✓* ✓
VEC × ✓
BEKK × ✓* ✓* ✓ ✓*
ABEKK × ✓* ✓ ✓ ✓*
CCC × ✓
DCC ×* ✓* ✓ ✓*
ADCC ×* ✓* ✓ ✓*
GARCHCOPULA × ✓ ✓* ✓
RSVAR × × ✓* ✓ ✓
MSV ✓
RCOV × ✓* ✓* ✓* ✓
CP × ✓ ✓* ✓ ✓

MVP vs VT
Cov ✓* ✓ ✓ ✓*
EWMA ✓ ✓
VAR ✓* ✓ ✓ ✓
VEC ✓ ✓* ✓ ✓ ✓*
BEKK ✓* ✓* ✓ ✓ ✓*
ABEKK ✓* ✓ ✓ ✓
CCC ✓ ✓* ✓ ✓ ✓*
DCC ✓ ✓* ✓ ✓ ✓*
ADCC ✓ ✓* ✓ ✓ ✓*
GARCHCOPULA ✓ ✓ ✓* ✓
RSVAR ✓
MSV ✓ ✓* ✓
RCOV ✓ ✓ ✓
CP ✓ ✓ ✓ ✓

con-MVP vs VT
Cov ✓ ✓ ✓ ✓
EWMA ✓ ✓* ✓
VAR ✓ ✓ ✓ ✓
VEC ✓ ✓ ✓ ✓
BEKK ✓ ✓ ✓ ✓
ABEKK ✓ ✓ ✓ ✓
CCC ✓ ✓ ✓ ✓
DCC ✓ ✓ ✓ ✓
ADCC ✓ ✓ ✓ ✓*
GARCHCOPULA ✓ ✓* ✓ ✓ ×
RSVAR ✓
MSV ✓ ✓ ✓
RCOV ✓ ✓ ✓
CP ✓ ✓ ✓ ✓*

Notes: See Table S3.1 for explanations of econometric model abbreviations; CP denotes combined param-
eter model (6) from the main paper; and MVP, con-MVP, and VT strategies are described in Table S4.1.
See Table S1.1 for explanations of datasets. Results are for value-weighted data at weekly frequency. ✓:
left strategy outperforms right at 5% level or lower; ✓*: left strategy outperforms right at 10% level;
×: left strategy underperforms right at 5% level or lower; ×*: left strategy underperforms right at 10%
level; else, insignificant difference. Significance corresponds to the Ledoit and Wolf (2008) robust test for
differences between the Sharpe ratios.
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S3 Econometric Models

Table S3.1 lists the econometric models.

S3.1 Sample Covariance

Our first econometric model to estimate the variance-covariance matrix is the sample covari-
ance matrix (Cov). Sample-based in-sample estimation of the variance-covariance matrix is
standard in the literature on the naive diversification puzzle (DeMiguel et al., 2009; Fletcher,
2011; Tu and Zhou, 2011; Kirby and Ostdiek, 2012). Some studies examine improved estima-
tion, but they typically focus on a small set of models (DeMiguel et al., 2013). The sample
covariance matrix places equal weight on past observations.

S3.2 Exponentially Weighted Moving Average

The recent past might be more informative for estimating the variance-covariance matrix to
use in selecting portfolios, motivating our first refinement, the exponentially weighted moving
average (EWMA) model. The EWMA model suggested by RiskMetrics places decaying weight
on the past: Σt = αΣt−1+(1−α)(rt− r̄t)′(rt− r̄t) where our decay parameter suggested is 0.96
(weekly). The EWMA specification corresponds to a nonstationary IGARCH model with zero
intercept.

S3.3 Vector Autoregression

To exploit dependence along the cross-section and time-dimension (serial), we estimate a vec-
tor autoregression (VAR): Y = XΦ + U using Bayesian methods. We experimented with a
VAR with a Normal-Wishart natural conjugate prior and another with a Minnesota prior.
To reduce the impact of our prior on our results, we choose the posterior based on a non-
informative prior, and we report the posterior mode of the variance-covariance matrix. Long
lags are helpful to approximate the Wold representation, but we typically find two lags to be
optimal at weekly frequency, especially as we look at financial variables and given computa-
tional considerations. We therefore include a constant and two lags of the variables, i.e., we
estimate a VAR(2).

S3.4 Vector Error Correction

Accounting for potential cointegration between the variables, we move beyond VAR to esti-
mate a parsimonious vector error correction (VEC) model: ∆yt = Πyt−1 +∑p−1

i=1 Φ∗
i ∆yt−i + εt.

We compute the number of cointegrating relations in the system following the Johansen trace
test (Johansen, 1988, 1991) and employ the variance-covariance matrix estimated from the
VEC model. If the Johansen test fails to reject the null of no cointegrating relations, then
our VEC reduces to a VAR in first differences (error-correction coefficient is zero).

S3.5 BEKK-GARCH and Asymmetric BEKK-GARCH

The volatility of financial return data varies over time. General Autoregressive Conditional
Heteroscedasticity (GARCH) provides a simple way of modeling the evolution of volatil-
ity as a deterministic function of past volatility and innovations. Univariate GARCH ex-

presses the error term of a time series εt = H1/2
t ξt where ξt is an i.i.d. innovation and
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Ht = f({εt−i,Ht−j}q,pi=1,j=1) and can be extended to the multivariate setting through the
vech(⋅) operator that stacks the lower triangular part of a symmetric N × N matrix into
a N∗ = N(N + 1)/2 dimensional vector: vech(Ht) = ω +∑q

i=1Aiηt−i +∑
p
j=1Bjht−j . With this

notation, ht = vech(Ht), ω is the constant component of the covariances, and ηt = vech(εtεTt ).
To prepare the data for GARCH estimation, we fit an ARMA model to the data for each series
from which to obtain demeaned residuals εt. Diagnostics such as Ljung Box tests of serial
correlation suggest ARMA(1,1) fits the data well.

Our first multivariate GARCH specification is BEKK-GARCH (Engle and Kroner, 1995),
which allows for the dependence of conditional variances of one variable on lagged values of
another so that causalities in variances can be modeled. Empirically, BEKK is general, but
easy to estimate. Relaxing symmetry, we also allow positive and negative shocks of equal
magnitude to have different effects on conditional volatility by employing Asymmetric BEKK
(ABEKK). With ABEKK, vech(Ht) = ω + ∑q

i=1 [Aiεt−i +Ciηt−i] + ∑
p
j=1Bjht−j . We allow

(q = 1) one symmetric innovation when estimating BEKK. When estimating ABEKK, we
allow one symmetric innovation and one asymmetric innovation.

S3.6 Conditional Correlation: Constant, Dynamic, & Asymmetric

BEKK and its sibling ABEKK suffer from the curse of dimensionality that might render them
computationally infeasible for investors allocating capital across a large set of investment
choices. We therefore also estimate a constant conditional correlation (CCC) model. The
CCC model is a multivariate GARCH model, where all conditional correlations are constant
and conditional variances are modeled by univariate GARCH processes (Bollerslev et al.,
1990).

Let us decompose the conditional covariance matrix into conditional standard deviations

and a correlation matrix Ht = DrRtDt where Dt = diag (h1/21t , . . . , h
1/2
Nt ) is a diagonal matrix

of the standard deviations for the N investments. The conditional correlation matrix for the
CCC model is constant over time: Rt = R. The CCC model benefits from almost unrestricted
applicability for large systems of time series, but fails to account for the observation that
correlation increases during financial crises.

Dynamic conditional correlation (DCC) permits correlation to vary over time (Engle,
2002). In addition to DCC, we also estimate its asymmetric version (ADCC). Without ac-
counting for dynamics of asymmetric effects, DCC cannot distinguish between the effect of
past positive and negative shocks on the future conditional volatility and levels (Cappiello
et al., 2006). As when we estimate BEKK and ABEKK, we allow (q = 1) one symmetric in-
novation when estimating CCC and DCC. When estimating ADCC, we allow one symmetric
innovation and one asymmetric innovation.

S3.7 Copula-GARCH

The assumption of multivariate normality is often called into question in practical applications.
As motivation, consider Apple and Microsoft, who produce similar products. Shocks that
affect Apple may be expected to affect Microsoft. Each company may experience similar
nonlinear extreme events, hence exhibiting tail dependence. A portfolio manager who assumes
multivariate normality will underestimate the frequency and magnitude of rare events. Such
underestimation may be detrimental to the performance of the portfolio.

Modeling multivariate dependence among stock returns without assuming multivariate
normality has become popular in the 21st century. Copulas are functions that may be used
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to bind univariate marginal distributions to produce a multivariate distribution (Sklar, 1959).
Parameters can vary over time as an autoregression in a copula-GARCH model. Copulas
have become the standard tools for modeling multivariate dependence among stock returns
without assuming multivariate normality with many general applications in finance (Stric and
Granger, 2005; Zimmer, 2012; Christoffersen et al., 2012; Aloui et al., 2013; Christoffersen
and Langlois, 2013; Creal et al., 2013; Xiao, 2014; Adrian and Brunnermeier, 2016; Bodnar
and Hautsch, 2016; Solnik and Watewai, 2016; Bekiros et al., 2017).

We specify a copula-GARCH process without fitting a VAR for the conditional mean.
We set the following tuning parameters to the robust regression: γ = 0.25 (proportion to
trim), δ = 0.01 (critical value for the re-weighted estimator), 500 subsets, and 10 steps. We
allow for a symmetric DCC autoregressive order of (1,1) and choose the multivariate Student
copula distribution model, where the DCC copula is static, and we estimate the correlation
parameter in the static Student copula by maximum likelihood. We apply an empirical
(pseudo maximum likelihood) transformation to the marginal innovations of the GARCH
fitted models. In estimating the above specification for return data, we calculate standard
errors, require stationarity when optimizing the univariate GARCH, and do not use any scale
option during this first stage.1 We take the average robust estimate of the covariance matrix.

S3.8 Regime-Switching Vector Autoregression

To account for bull and bear phases of the market, we estimate a discrete time-varying param-
eter model in the form of a regime-switching VAR (RSVAR) as in Chan and Eisenstat (2018):
B0,Styt = µSt

+ B1,Styt−1 + ⋯ + Bp,Styt−p + εt where εt ∼ N (0,ΣSt). We choose two regimes
in the mean and in the covariance matrix. For each rolling window, we use a pre-sample of
one year and estimate over the remaining sample of nine years in the window. Our Bayesian
estimation includes 20,000 simulations with a burn-in of 5,000 periods. We set our lag length
at 2 for parsimony. To derive the variance-covariance matrix from the RSVAR, we back out
the states using highest probability, get part of the parameter set Θ corresponding to the
state at each time, and calculate the variance-covariance matrix as Σ = (Y −XΘ)′(Y −XΘ).

S3.9 Multivariate Stochastic Volatility

Another nonlinear state-space model that allows for heteroscedasticity is the computationally
challenging multivariate stochastic volatility model (MSV). The curse of dimensionality for
the MSV is that the degrees of freedom in the variance-covariance matrix scales quadratically
with the number of investments. Multivariate factor stochastic volatility breaks the curse of
dimensionality by decomposing the variance-covariance matrix and using the pivoted Cholesky
algorithm of Higham (1990). The decomposition transforms the estimation problem from

1We alternate between using R’s solnp solver, which is a nonlinear optimization using the augmented
Lagrange method, and gosolnp, which randomly initializes and conducts multiple restarts of the solnp solver.
When the objective function is non-smooth or has many local minima, it is hard to judge the optimality of
the solution, and this usually depends critically on the starting parameters. The gosolnp function enables the
generation of a set of randomly chosen parameters from which to initialize multiple restarts of the solver. We
chose solnp, as it is faster, but when our solver encounters difficulties, we switch to gosolnp.
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being quadratic in investments to becoming linear in investments.2

We demean the data and use r = 2 factors, where the factor loadings are unidentified. As
the sampler places no constraints on the loading matrix, we benefit from significant reduc-
tions in run time.3 Placing no constraints on the loading matrix possibly results in unstable
posteriors or multiple local optima. The instability of posterior estimates or multiplicity of
local optima cause no issues for our study, however, as inference is on the covariance matrix
rather than on the factor loadings (Kastner, 2019a). We find 10,000 draws with a burn in of
1,000 sufficient for convergence of the estimates.

S3.10 Realized Volatility

Our final econometric approach is distribution or model free: realized volatility (RCOV).
Realized variance is the summation matrix of the return vector outerproduct r′iri over each day
in a given week. Realized volatility is the Cholesky decomposition of the realized variance. We
focus on annualized realized volatility by pre-multiplying the realized variance by the number
of trading days in a year divided by the number of trading days in a week and obtaining the
Cholesky decomposition of this product.

2We adapt our method and exposition from Kastner (2019a,b). Observations of returns yt = (yt1, . . . , ytN)
′

follow

yt∣Λ, ft, Σ̄t ∼ NN(Λft, Σ̄t)

ft∣Σ̃t ∼ N (0, Σ̃t),

where ft = (ft1, . . . , ftr)
′ is the vector of factors and Λ ∈ RN×r is the matrix of factor loadings. The covariance

matrices Σ̄t and Σ̃t are diagonal and represent stochastic volatility processes

Σ̄t = diag(exp h̄t1, . . . , exp h̄tN)

Σ̃t = diag(exp h̃t1, . . . , exp h̃tr)

h̄ti ∼ N (µ̄i + ψ̄i(h̄t−1,i − µ̄i), σ̄
2
i ) i = 1, . . . ,N

h̃tj ∼ N (µ̃j + ψ̃j(h̃t−1,j − µ̃j), σ̃
2
j ) j = 1, . . . , r.

With latent factor models, few shocks drive the system and we can reduce the number of unknowns through the
decomposition Σt = Σ̃t + Σ̄t where rank(Σ̃) = r < N and Σ̄t is a diagonal matrix where the diagonal entries are
the idiosyncratic errors. Using the pivoted Cholesky algorithm of Higham (1990), Σ̃t = ΨΨ′ where Ψ ∈ RN×r

has Nr − r(r − 1)/2 free elements; therefore, N(r + 1) − r(r − 1)/2 free elements are left in Σt, which is now
linear in N . Thus, Σt = ΛΣ̃tΛt + Σ̄t.

3We also speed up computation by storing only the conditional covariance matrix and the square roots
of its diagonal elements and parallelizing the factorstochvol function of Kastner (2019a) in R and C++ with
hyperthreading.
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Table S3.1: Econometric models

1 Sample covariance matrix (Cov)
2 Exponentially weighted covariance matrix (EWMA)
3 Vector autoregressions (VAR)
4 Vector error corrections (VEC)
5 Multivariate BEKK-GARCH (BEKK)
6 Asymmetric multivariate BEKK-GARCH (ABEKK)
7 Constant conditional correlation GARCH (CCC)
8 Dynamic conditional correlation GARCH (DCC)
9 Asymmetric dynamic conditional correlation GARCH (ADCC)
10 T-copula with GARCH margins (COPULA)
11 Regime-switching vector autoregressions (RSVAR)
12 High dimensional multivariate stochastic volatility (MSV)
13 Realized covariance (RCOV)

S4 Portfolio Models

Table S4.1: Portfolio models

1 Naive portfolio model based on equal investment across investments (1/N)
2 Minimum-variance portfolio (MVP)
3 Constrained minimum-variance portfolio (Con-MVP)
4 Volatility-timing strategies (VT)

5
Naive portfolio inputting average cov-matrix

in Table S3.1 into each of M2-M5 (CP)

6
Naive portfolio across each of the cov-matrices

in Table S3.1 based on each of M2-M5

7
Naive portfolio across M2-M5 based on each

of the cov-matrices in Table S3.1

Notes: We describe combined parameter (CP) model 5 in equation (6) and the other
combined parameter models 6 and 7 in footnote (16) of the main paper.
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