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Problem Set 2: Volatility & Filtering

Volatility

ARCH, GARCH and Forecasting

Exercise 1 (50 Marks). For this exercise you will need the dataset tsdata2.mat and the problems MUST be
implemented in Matlab where indicated. For this you will need to provide your Matlab program in a separate
sheet and please highlight the changes you did to the original program. Since the following exercises should
be implemented for two different portfolios, you only need to provide the Matlab code for one portfolio. Let
the stock market index of country i be denoted as Pit and let Rit denote the EUR return of a portfolio of
British, German and US stocks. Construct the log return series for each country as 4Rit = lnPit− lnPit−1.
Construct a EUR return portfolio, Rpt with equal country weights (don’t forget to account for the exchange
rate changes).

a) For model comparisons, construct a baseline measure of daily volatility:

σt =
√
y2t (1)

where yt is i) the portfolio return, Rpt ii) the Germany total return index P1t. (1 point)

b) Consider the following Exponential Smoothing model of the variance:

σ2
t+1 = (1− λ)y2t + λσ2

t (2)

Estimate λ using MLE. Construct an estimated series of period t’s variance, σ̂2
t+1 = (1− λ)y2t + λσ2

t and of
period t’s volatility. Plot the series against the baseline. Why is the correlation between the two series so
high? Re-estimate λ based on the first half of the sample. Construct an estimate, σ̂2

t+1 using the second half
of the sample. Plot the series against the baseline. Why is the correlation between the two series so high?
Based on the estimate of λ, can we predict changes in tomorrow’s volatility? (4 points)

c) Consider the following GARCH(2,1)model of the variance:

σ2
t+1 = ω + α1y

2
t + α2y

2
t−1 + βσ2

t (3)

Estimate the parameters ω, α1, α2 and β using MLE. Construct an estimated series of period t’s variance,
σ̂2
t+1 = ω+α1y

2
t +α2y

2
t−1 + βσ2

t and of period t’s volatility. Plot the series against the baseline. Why is the
correlation between the two series so high? Re-estimate the parameters based on the first half of the sample.
Construct an estimate, σ̂2

t+1 using the second half of the sample. Plot the series against the baseline. Why is
the correlation between the two series so high? Based on the estimated parameters, can we predict changes
in tomorrow’s volatility? (20 points)

d) Consider the following leverage GARCH(1,2) model of the variance:

σ2
t+1 = ω + α1(yt − α2σt)

2 + β1σ
2
t + β2σ

2
t−1 (4)

Estimate the parameters ω, α1, α2, β1 and β2 using MLE. Construct an estimated series of period t’s vari-
ance, σ̂2

t+1 = ω + α1(yt − α2σt)
2 + β1σ

2
t + β2σ

2
t−1 and of period t’s volatility. Plot the series against the

baseline. Why is the correlation between the two series so high? Re-estimate the parameters based on the
first half of the sample. Construct an estimate, σ̂2

t+1 using the second half of the sample. Plot the series
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against the baseline. Why is the correlation between the two series so high? Based on the estimated param-
eters, can we predict changes in tomorrow’s volatility? (20 points)

e) Compare the above models. How do they perform against their GARCH (1,1) counterpart (5 points)?

GARCH

Exercise 2 (12 Marks). Consider the GARCH model

yt = σtεt εt ∼ NID(0, 1)

σ2
t = γ + αy2t−1 + βσ2

t−1 γ > 0, α ≥ 0, β ≥ 0

1. Show that yt is a martingale difference and derive an expression for its (unconditional) variance. (4
Marks)

2. Find the autocorrelation function of (a) yt and (b) y2t . Discuss. (6 Marks)

3. Write down the log-likelihood function for the GARCH-M model

yt = δσt + ut t = 1, . . . , T

in which δ is an unknown parameter and ut follows a GARCH(1,1) process. State any assumptions
you make. (2 Marks)

Markov-Switching & Stochastic Volatility Models

Exercise 3 (Optional).

1. Why might we want to consider employing Markov-Switching models? If one was to entertain the
possibility of using such models, briefly describe the basic setup, how optimal inference and forecasting
might be conducted in a recursive manner, how we might start the algorithm and how we might
estimate the parameters.

2. Why might we want to consider employing Stochastic-Volatility models? If one was to entertain the
possibility of using such models, briefly describe the basic setup, a few properties of the model and
some issues with the model.

Filtering

State Space Form & Kalman Filtering

Exercise 4 (20 Marks). Consider the following MA(2) model

yt = εt + θ1εt−1 + εt−2

Write this model in state space form. (4 Marks) Is the model stationary? (1 Mark) How would you initialise
the Kalman filter? (1 Mark) Write down the initial state vector a0, the initial MSE matrix P0, the first
prediction error v1 and its MSE f1. (4 Marks) What would the updated state vector a1 and covariance
matrix P1 be? (2 Marks) Write the prediction equations a2|1 and P2|1 and v2 and f2. (8 Marks)
Optional : derive the recursion for the Kalman filter in this case for vt and ft.
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ACGF & Spectrums

Exercise 5 (4 Marks). Derive the autocovariance generating function and the spectral density function for
the MA(1) process

yt = εt + θεt−1

Hint : the MA(1) process may be expressed as Φ(L)yt = Θ(L)εt where the lag polynomials are Θ(eiω) = 1+eiω

and Φ(eiω) = 1.

Seasonal difference filter

Exercise 6 (2 Marks). Derive the gain function for the seasonal difference filter, h(L) = 1− L12.

Real time filtering & filtered data

Exercise 7 (5 Marks).

1. Suppose you are asked to estimate the output gap in real time. How might you go about this and what
issues might be present in using two-sided filters? (3 Marks)

2. Discuss some issues in conducting regressions using filtered data. (2 Marks)

Hodrick-Prescott filter

Exercise 8 (7 Marks). The gain function of the Hodrick-Prescott filter is given by

G(ω) =

[
1 +

(
sin(ω/2)

sin(ω0/2)

)4
]−1

where

ω0 = 2arcsin

(
1

2λ
1
4

)
Different specifications of λ imply that 50% of the filter gain has been completed at a particular number of
cycles, e.g. 40-quarter cycle.

Using MATLAB, determine the values of λ for which 50% of the filter gain has been completed at

1. 40-quarter cycle (10 years for quarterly data) (1 Mark)

2. 10-year cycle (annual data) (1 Mark)

3. 120-month cycle (monthly data) (1 Mark)

4. 32-quarter cycle (1 Mark)

5. 6-quarter cycle (1 Mark)

6. 20-quarter cycle (1 Mark)

7. 56-quarter cycle (1 Mark)
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