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Section A (200 Marks)

Please attempt TWO questions from the three questions in this sec-
tion.

Question 1 (100 Marks) – Identification & Frequency Related Filtering.

Part (a): (70 Marks)

i. By the law of total probability (LTP)

P [Y (a) = 0] = P [Y (a) = 0|Z = a]P (Z = a)+P [Y (a) = 0|Z = b]P (Z = b)

We know that P (Z = a) = P (Z = b) = 0.5. We can observe the
distribution P [Y (a) = 0|Z = a] = P [Y = 0|Z = a] and calculate it:

P (Y = 0|Z = a) = P (Y = 0, Z = a)/P (Z = a) = .1/.5 = 0.2

We do not observe P [Y (a) = 0|Z = b] but since it is a probability, we
know that P [Y (a) = 0|Z = b] ∈ [0, 1]. So, our identification region is

H[P [Y (a) = 0]] = [0.2× 0.5, 0.2× 0.5 + 0.5] = [0.1, 0.6]

ii. By the law of iterated expectations (LIE)

E[Y (b)]
LIE
= E[Y (b)|Z = a]P (Z = a) + E[Y (b)|Z = b]P (Z = b)

= E[Y (b)|Z = a](.50) + E[Y |Z = b](.50)

The only thing we know about the counterfactual quantity E[Y (b)|Z =

a] is that
E[Y (b)|Z = a] ∈ [0, 2]
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For E[Y (b)|Z = b] = E[Y |Z = b], we have

E[Y |Z = b] =

= 0 · P (Y = 0|Z = b) + 1 · P (Y = 1|Z = b) + 2 · P (Y = 2|Z = b)

=
.3

.5
+ 2 · .08

.50

= 0.6 + 0.32

= 0.92

Hence we have that

E[Y (b)] ∈ 0.92(0.50) + [0, 2](0.50)

= [0.46, 1.46]

We can do an analogous calculation for E[Y (a)]. We have

E[Y (a)] = E[Y (a)|Z = a]P (Z = a) + E[Y (a)|Z = b]P (Z = b)

= E[Y |Z = a](.50) + E[Y (a)|Z = b](.50)

= E[Y |Z = a](.50) + [0, 2](.50)

and

E[Y |Z = a] = 0 · P (Y = 0|Z = a) + 1 · P (Y = 1|Z = a) + 2 · P (Y = 2|Z = a)

= 0 +
.25

.50
+ 2 · .15

.50

= 0.5 + 0.6

= 1.1
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Hence we have that

E[Y (a)] ∈ 1.1(.50) + [0, 2](.50)

= [0.55, 1.55]

Putting these two regions together, we have the following bounds on
the average treatment effect:

E[Y (b)]− E[Y (a)] ∈ [.46− 1.55, 1.46− .55]

= [−1.09, 0.91]

iii. For here and the rest of this problem, let α and β denote the true
values of E[Y (a)] and E[Y (b)], respectively. Let [αL, αU ] and [βL, βU ]

denote their respective identified sets. The maximin rule is

δMM =


0 if αL > βL

1 if βL > αl

[0, 1] if αL = βL

Since αL = 0.55 > 0.46 = βL, choose δMM = 0. Assign everyone
treatment a.
As in Manski (2007)

δMMR =
βU − αL

(αU − βL) + (βU − αL)
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Using the numbers from part i,

δMMR =
1.46− 0.55

(1.55− 0.46) + (1.46− 0.55)

=
0.91

1.09 + 0.91

= 0.455

The doctor will assign 45.5% of the patients to the new treatment b and
the others to the status quo a.

iv. No, this statement does not accurately describe the empirical finding.
We can only say that the patients who received the status quo drug
and are members of Jazz bands on average lived longer than those
receiving the status quo drug who do not have such a background.
We cannot say that the membership of a Jazz band increased the
probability of patient who received the status quo drug living for 2
years after treatment.
Asking what would happen to this E(Y |X) when we vary X is akin
to a hypothetical change in X, where we have no data and so the
researcher has confused correlation with causation and has used a
counterfactual (expressing what has not happened but what might or
would happen if circumstances, i.e. data, were different). The re-
searcher is in effect extrapolating using the assumption of external
validity.
However, if the patients who received the status quo drug were ran-
domly assigned as being members of Jazz bands (an impossibility
in this case, but possible in more general cases where X could in-
clude randomly distributing some other aspect to patients), then the
researcher would be correct in saying that an increase in that covari-
ate increases the probability that a patient will live longer on average
than a patient who does not have that aspect. But since the distri-
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bution of being a member of a Jazz band is non-random and we are
dealing with what actually happened (descriptive) we cannot say that
being in a Jazz band increases the probability that a patient who re-
ceives the status quo drug lives for 2 years.

Part (b): (30 Marks)

i. Period p = 2π
ω

where ω is the frequency.

p =
2π

ω
=

2π

0.3
≈ 20.9 years

ii. The gain function is
g(ω) = |c(e−iω)|

where |c(e−iω)| is the modulus of c(e−iω), the frequency response func-
tion, i.e.

|c(e−iω)| =
√
c(e−iω)c(eiω)

As the Kutznets filter is

c(L) = b(L)a(L)

we can compute the gain

g(ω) = |c(e−iω)| = |b(e−iω)||a(e−iω)|

Let us focus on each of the polynomials separately. First consider
b(L) = L−5 − L5

|b(e−iω)| =
√
b(e−iω)b(eiω) =

√
(eiω5 − e−iω5)(e−iω5 − eiω5)

=
√

2− 2 cos(10ω) =
√

2
√

1− cos(10ω) (1)



XEC70041

Next consider a(L) = 1
5
(L−2 + L−1 + L0 + L1 + L2)

|a(e−iω)| =
√

1

5
(eiω2 + eiω + e0 + e−iω + e−iω2)

1

5
(e−iω2 + e−iω + e0 + eiω + eiω2)

=
1

5

√
5e0 + 4(eiω + e−iω) + 3(eiω2 + e−iω2) + 2(eiω3 + e−iω3) + eiω4 + e−iω4

=
1

5

√
5 + 8 cos(ω) + 6 cos(2ω) + 4 cos(3ω) + 2 cos(4ω) (2)

Putting (1) & (2) together, we get the result.
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Question 2 (100 Marks) – Univariate Time Series & Forecasting.

Part (a): (70 Marks)

i. The MA(2) process is defined by

yt = εt + θ1εt−1 + θ2εt−2

where εt is a sequence of independent random variables from a dis-
tribution with zero mean and constant variance and where θ1 and θ2

are parameters. So

µ = E(εt) + θ1E(εt−1) + θ2E(εt−2) = 0

and we have that the autocovariance function at lag 0 (i.e. variance)
is

γ(0) = E[(εt + θ1εt−1 + θ2εt−2)(εt + θ1εt−1 + θ2εt−2)]

= E(ε2t ) + θ21E(ε2t−1) + θ22E(ε2t−2)

= (1 + θ21 + θ22)σ
2

where σ2 is the variance. The autocovariance function at lag 1 is

γ(1) = E[(εt + θ1εt−1 + θ2εt−2)(εt−1 + θ1εt−2 + θ2εt−3)]

= θ1E(ε2t−1) + θ2θ1E(ε2t−2)

= θ1(1 + θ2)σ
2
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The autocovariance function at lag 2 is

γ(2) = E[(εt + θ1εt−1 + θ2εt−2)(εt−2 + θ1εt−3 + θ2εt−4)]

= θ2E(ε2t−2)

= θ2σ
2

The autocovariance function for any lag τ > 2 is γ(τ) = 0. Putting all
this together:

γ(τ) =



(1 + θ21 + θ22)σ
2 τ = 0

θ1(1 + θ2)σ
2 τ = 1

θ2σ
2 τ = 2

0 τ > 2

We see that the process is stationary since the mean, variance and
autocovariances are independent of t. Now note that the autocorrela-
tion function at lag τ is ρ(τ) = γ(τ)

γ(0)
. So the autocorrelation function is

given by

ρ(τ) =



1 τ = 0

θ1(1+θ2)

1+θ21+θ
2
2

τ = 1

θ2
1+θ21+θ

2
2

τ = 2

0 τ > 2

ii. From visual inspection, the data are clearly nonstationary as seen
from the mean of US real GDP, which increases with time. The mean
US real GDP between 1950 and 1970 is somewhere around $3 trillion,
while the mean US real GDP between 1990 and 2010 is somewhere
around $10 trillion. The correlogram, which plots the sample auto-
correlation function against lags of stationary series drops off as the
number of lags becomes large, but this does not usually happen for a
nonstationary series. So, we might expect to see the correlogram not
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dropping off even as the number of lags becomes large.

iii.
yt = α + βt+ ut (3)

There are different ways to induce stationarity in this model. Students
get full credit for following any approach correctly.

(a) Trend removal (detrending) to induce stationarity:

yt − βt = α + εt

which is stationary; hence description as ‘trend stationary’. In
practice, we would have to estimate β, of course.

(b) We can also induce stationarity by taking first differences, albeit
the model is more naturally made stationary through detrending.

∆yt = yt − yt−1 = β + εt − εt−1 = β + ∆εt

which is a stationary process; hence description as ‘difference
stationary’.

(c) Students may also discuss applying other filters to the series to
remove nonstationarity.

Note that this model has a deterministic trend and a purely random
(white noise) disturbance. Random shocks are only transitory; there
is reversion to trend. The mean of yt is

E(yt) = α + βt

which is time dependent; hence yt is nonstationary. The variance is
V (yt) = V (εt) = σ2, which is independent of time. The autocovariance
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is also independent of time:

C(yt, yt−j) = E(εtεt−j) = 0 ∀j 6= 0

iv. The process in figure 2 seems to be an MA(2) model since the sample
autocorrelation function cuts off at lag length 2, which corresponds to
the theoretical counterpart for an MA(2) model. The process in figure
3 seems to be an AR(2) model since the sample autocorrelation func-
tion does not cut off but the sample partial autocorrelation function
cuts off at lag length 2, which corresponds to the theoretical counter-
parts for an AR(2) model.

Regarding estimation of an MA(2) model figure 2 (zero mean, µ = 0)

yt = εt + θ1εt−1 + θ2εt−2

this cannot be estimated by regression since nothing on the right-
hand side is known. We do not know the mean (µ) except assuming
it is zero and we do not know the random shocks. We would use
maximum likelihood estimation. Also note that from above

ρ(τ) =


θ1(1+θ2)

1+θ21+θ
2
2

τ = 1

θ2
1+θ21+θ

2
2

τ = 2

Consider

r1 =
θ̂1 + θ̂1θ̂2

1 + θ̂21 + θ̂22

and

r2 =
θ̂2

1 + θ̂21 + θ̂22

We have two simultaneous equations involving two variables (θ̂1 and
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θ̂2) with quadratic terms (θ̂21 and θ̂22) and a cross product θ̂1θ̂2. We can
either solve this through tedious algebra or use a computer program
to help us.

Regarding estimation of an AR(2) model figure 3, the AR(2) is a legit-
imate regression equation

yt = µ+ φ1yt−1 + φ2yt−2 + εt

so OLS may be used – asymptotically valid. The complication is that
there are lags of dependent variables on the right hand side so the
independent variables are not fixed. OLS estimates of the φ1 param-
eters are consistent, even thought the regressors are lagged depen-
dent variables, as long as the disturbances, εt are non-autocorrelated,
which can be assessed by plotting and inspecting correlogram of
residuals (ρ̂(û) should be one at lag zero and zero for any lags greater
than one). Why? Because autocorrelation at lag 0 is the variance
divided by the variance, i.e. one and for lags other than one it is
the autocovariance between residuals at different lags divided by the
variance and there should be no correlation between residuals at dif-
ferent time periods, hence the autocorrelation should be zero at lags
other than 0. Randomness of residuals can be checked as in OLS
regressions by plotting and inspecting residuals over time or by using
a test statistic (see next part); if the residuals are not random, then
the model is inadequate; asymptotically, ρ̂ = r

a∼ N(0, 1
n
).

v. A zero mean µ = 0 MA(1) model is written

yt = εt + θ1εt−1
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We need to generate observations from what is unknown. We can
convert MA to AR if we have a stability assumption that |θ1| < 1:

εN = yN − θ1εN−1
= yN − θ1(yN−1 − θ1εN−2)

= yN − θ1yN−1 + θ21εN−2

We will follow this technique by considering the one-period-ahead
forecast for an MA(1):

ŷN+1 = ε̂N+1 + θ̂1ε̂N

where

ε̂N = yN − θ̂1yN−1 + θ̂21yN−2 − · · ·+ (−θ̂1)kyN−k (4)

ε̂N+1 = E(εN+1) = 0

∴ ŷN+1 = θ̂1ε̂N

Similarly, the two-period-ahead forecast will be

ŷN+2 = ε̂N+2 + θ̂1ε̂N+1

= E(εN+2) + θ̂1E(εN+1)

= 0

So, the two-period-ahead forecast for an MA(1) will be zero, which
reflects the short memory of MA processes, which display rapid con-
vergence to the mean (mean reversion), i.e. there is rapid reversion
of forecasts to the mean value 0 (µ more generally).

The mean square error of the predictor is defined as MSE(yT+j|T ) =
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ET [(yT+j|T − yT+j)2], so for the MA(1) process this is equal to

MSE(yT+1|T ) = ET (ε2T+1) = σ2

MSE(yT+j|T ) = ET (ε2T+j) + 2θ1ET (εT+jεT+j−1) + θ21ET (ε2T+j−1)

= σ2(1 + θ21) for j ≥ 1
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Question 3 (100 Marks) – Volatility & Kalman Filtering.

Part (a): (20 Marks)

i. First note that given the independence of ηt and εt, the mean of yt is
zero:

E(yt) = E(σtεt) = E(σt)E(εt) = 0 ∵ E(εt) = 0

So the kurtosis of yt is

E[(yt − E(yt))
4]

(E[(yt − E(yt))2])2
=

E[y4t ]

(V (yt))2

Now using the lemma, we get that the kurtosis of yt is given by

3 exp{2γh + 2σ2
h − 2γh − σ2

h} = 3 exp{σ2
h}

When σ2
h > 0, equivalently σ2

η > 0, which will be the case for the
stochastic volatility model

3 exp{σ2
h} > 3

and since the kurtosis of the standard normal distribution is 3, we can
see that the stochastic volatility model displays excess kurtosis rela-
tive to the standard normal distribution, i.e. the tails of the distribution
will be fatter in the stochastic volatility model than in the standard Nor-
mal distribution.
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Part (b): (80 Marks)

i. When the state follows a stationary process as it does here, the initial
conditions for the Kalman filter are given by its unconditional mean
and variance:

a0 = a1|0 = 0

P0 = P0 =
1

σ2
E(αtα

′
t) =

[
1 + θ2 θ

θ θ2

]

where the second line follows since αt = (yt, θεt)
′.

Alternative answer: When the model is stationary, we get the initial
conditions for the state from

a0 = (I−T)−1c

vec(P0) = [I−T⊗T]−1vec(RQR′)

ii.

a0a1|0 = 0

P0 = P0 =
1

σ2
E(αtα

′
t) =

[
1 + θ2 θ

θ θ2

]

The first prediction error is v1 = y1 and f1 = 1 + θ2.

iii. Updating, we get

a1 =

(
y1
θy1
1+θ2

)
and P1 =

(
0 0

0 θ4

1+θ2

)
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iv. We get the following prediction equations for α2:

a2|1 =

(
y1θ
1+θ2

0

)

and P2|1 =

(
θ4

1+θ2
0

0 0

)
+

(
1 θ

θ θ2

)

=

(
1+θ2+θ4

1+θ2
θ

θ θ2

)
∴ v2 = y2 −

θy1
1 + θ2

and f2 =
1 + θ2 + θ4

1 + θ2


