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Problem Set 2: Volatility & Filtering

Volatility

ARCH, GARCH and Forecasting

Exercise 1 (50 Marks). For this exercise you will need the dataset tsdata2.mat and the problems MUST be
implemented in Matlab where indicated. For this you will need to provide your Matlab program in a separate
sheet and please highlight the changes you did to the original program. Since the following exercises should
be implemented for two different portfolios, you only need to provide the Matlab code for one portfolio. Let
the stock market index of country i be denoted as Pit and let Rit denote the EUR return of a portfolio of
British, German and US stocks. Construct the log return series for each country as 4Rit = lnPit− lnPit−1.
Construct a EUR return portfolio, Rpt with equal country weights (don’t forget to account for the exchange
rate changes).

a) For model comparisons, construct a baseline measure of daily volatility:

σt =
√
y2t (1)

where yt is i) the portfolio return, Rpt ii) the Germany total return index P1t. (1 point)

b) Consider the following Exponential Smoothing model of the variance:

σ2
t+1 = (1− λ)y2t + λσ2

t (2)

Estimate λ using MLE. Construct an estimated series of period t’s variance, σ̂2
t+1 = (1− λ)y2t + λσ2

t and of
period t’s volatility. Plot the series against the baseline. Why is the correlation between the two series so
high? Re-estimate λ based on the first half of the sample. Construct an estimate, σ̂2

t+1 using the second half
of the sample. Plot the series against the baseline. Why is the correlation between the two series so high?
Based on the estimate of λ, can we predict changes in tomorrow’s volatility? (4 points)

c) Consider the following GARCH(2,1)model of the variance:

σ2
t+1 = ω + α1y

2
t + α2y

2
t−1 + βσ2

t (3)

Estimate the parameters ω, α1, α2 and β using MLE. Construct an estimated series of period t’s variance,
σ̂2
t+1 = ω+α1y

2
t +α2y

2
t−1 + βσ2

t and of period t’s volatility. Plot the series against the baseline. Why is the
correlation between the two series so high? Re-estimate the parameters based on the first half of the sample.
Construct an estimate, σ̂2

t+1 using the second half of the sample. Plot the series against the baseline. Why is
the correlation between the two series so high? Based on the estimated parameters, can we predict changes
in tomorrow’s volatility? (20 points)

d) Consider the following leverage GARCH(1,2) model of the variance:

σ2
t+1 = ω + α1(yt − α2σt)

2 + β1σ
2
t + β2σ

2
t−1 (4)

Estimate the parameters ω, α1, α2, β1 and β2 using MLE. Construct an estimated series of period t’s vari-
ance, σ̂2

t+1 = ω + α1(yt − α2σt)
2 + β1σ

2
t + β2σ

2
t−1 and of period t’s volatility. Plot the series against the

baseline. Why is the correlation between the two series so high? Re-estimate the parameters based on the
first half of the sample. Construct an estimate, σ̂2

t+1 using the second half of the sample. Plot the series
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against the baseline. Why is the correlation between the two series so high? Based on the estimated param-
eters, can we predict changes in tomorrow’s volatility? (20 points)

e) Compare the above models. How do they perform against their GARCH (1,1) counterpart (5 points)?

Solution 1 (ARCH, GARCH & Forecasting).
See MATLABps2sol.pdf.

GARCH

Exercise 2 (12 Marks). Consider the GARCH model

yt = σtεt εt ∼ NID(0, 1)

σ2
t = γ + αy2t−1 + βσ2

t−1 γ > 0, α ≥ 0, β ≥ 0

1. Show that yt is a martingale difference and derive an expression for its (unconditional) variance. (4
Marks)

2. Find the autocorrelation function of (a) yt and (b) y2t . Discuss. (6 Marks)

3. Write down the log-likelihood function for the GARCH-M model

yt = δσt + ut t = 1, . . . , T

in which δ is an unknown parameter and ut follows a GARCH(1,1) process. State any assumptions
you make. (2 Marks)

Solution 2 (GARCH models).
Consider the following model for parts (i) and (ii)

yt = σtεt εt ∼ NID(0, 1)

σ2
t = γ + αy2t−1 + βσ2

t−1 γ > 0, α ≥ 0, β ≥ 0 (5)

Part (i) Moments. A process yt is a martingale difference if Et−1[yt] = 0 where Et−j is the expectation
with information up to and including period t − j. In the case of the GARCH model (5), since σ2

t is built
with information from period t− 1, then Et−1[σt] = σt. Hence,

Et−1[yt] = Et−1[σt]Et−1[εt] = σt · 0 = 0 (6)

so yt is indeed a martingale difference.

Recall the law of iterated expectations for computing the variance of yt. By definition the unconditional
expectation of some quantity x is

E[x] = lim
j−→∞

Et−j . . . Et−3Et−2Et−1[x] (7)

From (6) & (7), it is clear that E[yt] = 0 so the variance of yt will be E[y2t ]. Note also that Et−j [y
2
t ] =

Et−j [σ
2
t ]. Then

Et−1[y2t ] = γ + αy2t−1 + βσ2
t−1

Et−2Et−1[y2t ] = γ + (α+ β)(γ + αy2t−2 + βσ2
t−2)

Et−3Et−2Et−1[y2t ] = γ(1 + α+ β) + (α+ β)2(γ + αy2t−3 + βσ2
t−3)

Et−4Et−3Et−2Et−1[y2t ] = γ(1 + (α+ β) + (α+ β)2) + (α+ β)3(γ + αy2t−4 + βσ2
t−4)
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so the general pattern of iterated expectations for some j > 2 is

Et−j . . . Et−2Et−1[y2t ] = γ(1 + (α+ β) + · · ·+ (α+ β)j−2) + (α+ β)j−1σ2
t−j+1

Therefore, making the assumption that (α+ β) < 1, the variance of yt is

E[y2t ] = lim
j−→∞

Et−j . . . Et−2Et−1[y2t ] =
γ

1− α− β

Part (ii) Autocorrelations. The levels of yt appear to be a white noise (no autocorrelation at any lag).
To see this, note that for τ > 0

E[ytyt−τ ] = E[εtεt−τσtσt−τ ] = E[εt]E[εt−τσtσt−τ ] = 0

However, y2t follows a certain ARMA process and thus past information can be used to forecast it. To find
the autocorrelations of y2t we follow Harvey (1993:276) and define the variable vt = σ2

t (ε2t −1) that is a white
noise since

Et−1(σ2
t (ε2t − 1)) = σ2

t [Et−1(ε2t )− 1] = 0

Hence
y2t = σ2

t + vt (8)

From (5) we have that (1− βL)σ2
t = γ + αy2t−1. Then, after multiplying (8) by (1− βL),

y2t = γ + (α+ β)y2t−1 + vt − βvt−1

so y2t follows an ARMA(1,1) process. From our knowledge on ARMA models we then get that

ρ1 =
α(1− (α+ β)β)

(1− 2(α+ β)β + β2)

and
ρτ = (α+ β)ρτ−1 for τ ≥ 2

To see that this is the autocorrelation function for an ARMA(1,1) process, consider the general ARMA(1,1)
process

yt = φyt−1 + εt + θεt−1 (9)

where we assume |φ| < 1 to ensure stationarity. The following properties result

E[ytεs] =


σ2 if s = t

(φ+ θ)σ2 if s = t− 1

0 otherwise

(10)

After multiplying (9) by yt, taking expectations and using (10), we get that

γ0 = φγ1 + σ2 + θ(φ+ θ)σ2 (11)

Now multiply (9) by yt−1, take expectations and use (10) to get

γ1 = φγ0 + θσ2 (12)

If we repeat this procedure and multiply (9) by yt−τ for τ ≥ 2, we find the following recursion

γτ = φγτ−1 for τ ≥ 2 (13)

To find the variance of the process, replace (12) into (11) and isolate γ0

γ0 = σ2

(
1 + 2φθ + θ2

1− φ2

)
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Being defined γ0, the autocorrelations ρτ = γτ
γ0

can be computed from (12) and (13). Hence

ρ1 = φ+
θσ2

γ0
=

(φ+ θ)(1 + φθ)

1 + 2φθ + θ2

ρτ = φρτ−1 for τ ≥ 2

Part (iii) GARCH in mean. We will write down the log-likelihood function of the following model

yt = δσt + ut

ut = σtεt εt ∼ NID(0, 1)

σ2
t = γ + αu2t−1 + βσ2

t−1

Since yt is not independent from past observations, the joint probability distribution equals L(YT ) =
ΠT
t=2p(yt|Yt−1) · p(y1) where Yt = {yt, yt−1, . . . , y2, y1}. We have that Et−1[yt] = δσt + Et−1[ut] = δσt

and that Et−1[(yt − Et−1|yt)2] = Et−1[u2t ] = σ2
t , where Et−1[z] = E[z|Yt−1]. Thus

yt|Yt−1 ∼ N
(
δ
√
γ + αu2t−1 + βσ2

t−1, γ + αu2t−1 + βσ2
t−1

)
(14)

It is worth noting that if we assume that u0 = σ0 = 0, (14) is also a valid expression for y1 and y1 ∼
N(δ
√
γ, γ). The log-likelihood function is

logL(α, β, δ, γ) = −T
2
ln(2π)− 1

2

T∑
t=1

ln(σ̃2
t )− 1

2

T∑
t=1

(
yt − δσ̃t
σ̃t

)2

where σ̃2
t = γ + α(yt−1 − δσ̃t−1)2 + βσ̃2

t−1 with y0 = σ̃0 = 0.

Markov-Switching & Stochastic Volatility Models

Exercise 3 (Optional).

1. Why might we want to consider employing Markov-Switching models? If one was to entertain the
possibility of using such models, briefly describe the basic setup, how optimal inference and forecasting
might be conducted in a recursive manner, how we might start the algorithm and how we might
estimate the parameters.

2. Why might we want to consider employing Stochastic-Volatility models? If one was to entertain the
possibility of using such models, briefly describe the basic setup, a few properties of the model and
some issues with the model.

Solution 3 (Markov-Switching & Stochastic Volatility models).

1. See section 6.3 of the notes in addition to Hamilton (1994) chapter 22.4, photocopies of which are
handed out in class.

2. See section 6.4 of the notes.

Also see sections 1 and 2 plus pages 10–12 of Fernández-Villaverde & Rubio-Ramı́rez (2010) available at
economics.sas.upenn.edu/~jesusfv/macrovolatilityformat.pdf. These sections are particularly in-
formative on the overall trend for macro and volatility, especially the history and comparing and contrasting
GARCH, Markov-Switching and Stochastic Volatility models. Finally, have a look at Hamilton, J. (2008)
‘Macroeconomics and ARCH’ available at dss.ucsd.edu/~jhamilto/JHamilton_Engle.pdf
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Filtering

State Space Form & Kalman Filtering

Exercise 4 (20 Marks). Consider the following MA(2) model

yt = εt + θ1εt−1 + εt−2

Write this model in state space form. (4 Marks) Is the model stationary? (1 Mark) How would you initialise
the Kalman filter? (1 Mark) Write down the initial state vector a0, the initial MSE matrix P0, the first
prediction error v1 and its MSE f1. (4 Marks) What would the updated state vector a1 and covariance
matrix P1 be? (2 Marks) Write the prediction equations a2|1 and P2|1 and v2 and f2. (8 Marks)
Optional : derive the recursion for the Kalman filter in this case for vt and ft.

Solution 4 (State Space Form & Kalman Filter for MA(2)).
To put this model in state space form, define the state vector αt = (yt, εt, εt−1) and write

yt = (1 0 0)αt t = 1, . . . , T (15)

αt =

0 θ1 θ2
0 0 0
0 1 0

αt−1 +

1
1
0

 εt (16)

where (15) is the measurement equation and (16) is the state equation.

MA models are always stationary. So, the Kalman filter can be initialised with the mean and covariance
matrix of the unconditional distribution of αt since αt is stationary. The initial state vector is a0 = a1|0 = 0
and as αt = (ytεt, εt−1)′, the initial covariance matrix P0 = P1|0 is

P1|0 = P0 =
1

σ2
E(αtα

′
t) =

1 + θ21 + θ22 1 θ1
1 1 0
θ1 0 1


since we are dealing with an MA(2) process. The first prediction error is v1 = y1 and f1 = 1 + θ21 + θ22. As
here Zt = (1 0 0), updating we get that

a1 =

 y1
y1

1+θ21+θ
2
2

θ1y1
1+θ21+θ

2
2


and

P1 =

0 0 0

0
θ21+θ

2
2

1+θ21+θ
2
2

−θ1
1+θ21+θ

2
2

0 −θ1
1+θ21+θ

2
2

1+θ22
1+θ21+θ

2
2
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We get the following prediction equations for α2:

a2|1 =


θ1y1(1+θ2)
1+θ21+θ

2
2

0
y1

1+θ21+θ
2
2



P2|1 =


1+θ21+θ

2
2+θ1[θ1(θ

2
1+θ

2
2)−θ1θ2]+θ2[θ2(1+θ

2
2)−θ

2
1 ]

1+θ21+θ
2
2

1
θ1(θ

2
1+θ

2
2)−θ1θ2

1+θ21+θ
2
2

1 1 0
θ1(θ

2
1+θ

2
2)−θ1θ2

1+θ21+θ
2
2

0
θ21+θ

2
2

1+θ21+θ
2
2


v2 = y2 −

θ1y1(1 + θ2)

1 + θ21 + θ22

f2 =
1 + θ21 + θ22 + θ1[θ1(θ21 + θ22)− θ1θ2] + θ2[θ2(1 + θ22)− θ21]

1 + θ21 + θ22

=
(1 + θ21 + θ22)2 − θ21(1 + θ2)2

1 + θ21 + θ22

Optional : further repetition reveals that the Kalman filter computes prediction erros from a recursion similar
to the MA(1) process. The algebra is simple though extremely tedious so we leave it out. You will not be
asked for such a general recursion under exam conditions.

ACGF & Spectrums

Exercise 5 (4 Marks). Derive the autocovariance generating function and the spectral density function for
the MA(1) process

yt = εt + θεt−1

Hint : the MA(1) process may be expressed as Φ(L)yt = Θ(L)εt where the lag polynomials are Θ(eiω) = 1+eiω

and Φ(eiω) = 1.

Solution 5 (Autocovariance & Spectrum for MA(1)).
Consider the MA(1) process

yt = εt + θεt−1

We can derive the autocovariance generating function as follows. First note that the autocovariance function
will be

γτ =


(1 + θ2)σ2 τ = 0

θσ2 τ = 1

0 τ > 1 ∨ τ < −1

You should ensure you can derive these. Now looking at the autocovariance generating function

fY (ω) =

∞∑
τ=−∞

γ(τ)e−iωτ

= (1 + θ2)σ2 + θσ2(e−iω + eiω)

= σ2[1 + θ(e−iω + eiω) + θ2] (17)

Note that the hint would have allowed us to do this faster by observing that from example 7.38 in the notes,
the autocovariance generating function for a general ARMA(p,q) is given by

fY (ω) =
σ2Θ(eiω)Θ(e−iω)

Φ(eiω)Φ(e−iω)

and substituting the lag polynomials for the MA(1) yields (17).
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The spectral density function is

sY (ω) =
1

2π
fY (ω)

=
σ2

2π
[1 + θ(e−iω + eiω) + θ2]

=
σ2

2π
[1 + 2θ cos(ω) + θ2]

where the last line follows from observing that e−iω + eiω = 2 cos(ω).

Seasonal difference filter

Exercise 6 (2 Marks). Derive the gain function for the seasonal difference filter, h(L) = 1− L12.

Solution 6 (Gain of Seasonal Difference Filter).
From definition 7.51 in the notes, the gain function is

G(ω) = |C(e−iω)|

where |C(e−iω)| is the modulus of C(e−iω), the frequency response function, i.e.

|C(e−iω)| =
√
C(e−iω)C(eiω)

As the seasonal difference filter is h(L) = 1− L12,

G(ω) =
√

(1− e−iω12)(1− eiω12)

=
√

2
√

1− cos(12ω)

where the second inequality follows from the fact that e−iω + eiω = 2 cos(ω).

Real time filtering & filtered data

Exercise 7 (5 Marks).

1. Suppose you are asked to estimate the output gap in real time. How might you go about this and what
issues might be present in using two-sided filters? (3 Marks)

2. Discuss some issues in conducting regressions using filtered data. (2 Marks)

Solution 7 (Two sided filters & real time data plus regression using filtered data).

1. On the first question, see the introductory paragraph in section 7.2.4 and the paragraph starting from
the bottom of page 201 onwards until I discuss regressions using filtered data.

2. On the second question, see my discussion of regression using filtered data starting from page 202 and
ending on the next page (up to the end of section 7.2.4).

Hodrick-Prescott filter

Exercise 8 (7 Marks). The gain function of the Hodrick-Prescott filter is given by

G(ω) =

[
1 +

(
sin(ω/2)

sin(ω0/2)

)4
]−1
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where

ω0 = 2arcsin

(
1

2λ
1
4

)
Different specifications of λ imply that 50% of the filter gain has been completed at a particular number of
cycles, e.g. 40-quarter cycle.

Using MATLAB, determine the values of λ for which 50% of the filter gain has been completed at

1. 40-quarter cycle (10 years for quarterly data) (1 Mark)

2. 10-year cycle (annual data) (1 Mark)

3. 120-month cycle (monthly data) (1 Mark)

4. 32-quarter cycle (1 Mark)

5. 6-quarter cycle (1 Mark)

6. 20-quarter cycle (1 Mark)

7. 56-quarter cycle (1 Mark)

Solution 8 (Hodrick-Prescott Filter).
When 50% of the filter gain has been completed, we can solve for λ for different data frequencies, starting
by equating

1

2
=

1 +

(
sin
(
ω
2

)
sin
(
ω0

2

))4
−1

⇐⇒ 2 = 1 +

(
sin
(
ω
2

)
sin
(
ω0

2

))4

⇐⇒ 1 =
sin
(
ω
2

)
sin
(
ω0

2

)
Plugging in the expression for ω0, we get that

1 =
sin
(
ω
2

)
sin
(

arcsin
(

1

2λ
1
4

))
⇐⇒ sin

(ω
2

)
= sin

(
arcsin

(
1

2λ
1
2

))
=

1

2λ
1
4

⇐⇒ λ =

[
1

2 sin
(
ω
2

)]4

Plugging in the values of ω, we get the corresponding values of λ as shown in table 1. The first three entries
show the typical calibration for λ in the Hodrick-Prescott filter for quarterly, annual and monthly data,
respectively. These corresponds to the business cycle frequency. However, when we increase the frequency
(reduce the period) to say 32 quarters, 20 quarters or even 6 quarters (all with quarterly data), notice how
we must reduce λ even though we are still using quarterly data – this is because we are focusing on higher-
frequency data. Similarly, for lower frequency (longer period) quarterly data, e.g. 56 quarters, we must
increase λ even though we are still using quarterly data – this is because we are focusing on low-frequency
data. While the first three parts provide you with the explanation why the standard numbers are chosen for
HP filters (quarterly/annual/monthly – business cycle frequency), the latter parts show you why you still
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ω λ

40 Quarters ≈ 1, 650
10 Years ≈ 6.85

120 Months ≈ 133, 107
32 Quarters ≈ 677
6 Quarters ≈ 1
20 Quarters ≈ 104
56 Quarters ≈ 6, 383

Table 1: Values of λ for Hodrick Prescott filter for different data frequencies.

must make adjustments if you want to focus on different frequencies/periods, holding the data type constant
(e.g. quarterly data).1

1This can get confusing. Lower frequency data is often synonymously referred to as annual data and higher frequency data
is often synonymously referred to as quarterly or monthly data. What I mean by frequency above is really a function of the
period you are interested in studying, i.e. long run (low frequency), business cycle (medium frequency) or extremely short run
(high frequency) such as seasonal variation, etc.
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